Skip to article frontmatterSkip to article content
Site not loading correctly?

This may be due to an incorrect BASE_URL configuration. See the MyST Documentation for reference.

Alternative Complementarity Specifications

PolicyEngine

Theoretical Foundation: Leisten (2025)

Leisten (2025) provides rigorous theoretical analysis of beer price controls at stadiums:

Key result: Under log-concavity of demand, beer price ceilings cause ticket prices to rise.

His model:

First-order conditions:

py=qy(py)qy(py)p_y = -\frac{q_y(p_y)}{q_y'(p_y)}

px=qx(px)qx(px)pyqy(py)p_x = -\frac{q_x(p_x)}{q_x'(p_x)} - p_y q_y(p_y)

When beer price ceiling ZZ binds:

dpxdZ=Zqy(Z)qy(Z)qx(px)qx(px)qx(px)2\frac{dp_x}{dZ} = \frac{Zq_y'(Z) - q_y(Z)}{\frac{q_x(p_x)q_x''(p_x)}{q_x'(p_x)} - 2}

Sign depends on: 2qx(px)22q_x'(p_x)^2 vs qx(px)qx(px)q_x(p_x)q_x''(p_x)

Under log-concavity: qxqx<qx2q_x q_x'' < q_x'^2, so Leisten proves dpxdZ<0\frac{dp_x}{dZ} < 0 (tickets rise when ceiling tightens).

Our extension: We allow two-way complementarity (A(PT,PB)A(P_T, P_B)), which is more general but requires assuming the cross-elasticity magnitude.


Current Specification (Two-Way Multiplicative)

Functional form:

A(PT,PB)=A0eλT(PTP0T)(PBP0B)ϵcrossA(P_T, P_B) = A_0 \cdot e^{-\lambda_T(P_T - P_0^T)} \cdot \left(\frac{P_B}{P_0^B}\right)^{-\epsilon_{cross}}

Where ϵcross=0.1\epsilon_{cross} = 0.1

Properties:

Citation: Standard in single-equation demand Varian (1992); two-way extension beyond Leisten (2025)


Alternative Specifications

1. Almost Ideal Demand System (AIDS)

Reference: Deaton & Muellbauer (1980)

Form: Derived from utility maximization

wi=αi+jγijlnpj+βiln(x/P)w_i = \alpha_i + \sum_j \gamma_{ij} \ln p_j + \beta_i \ln(x/P)

Where:

Cross-price elasticity:

ϵij=γijwiδij\epsilon_{ij} = \frac{\gamma_{ij}}{w_i} - \delta_{ij}

Advantages:

Disadvantages:

Typical estimates: Cross-elasticities range -0.5 to +0.5 for food items Deaton & Muellbauer (1980)

2. CES Utility Function

Reference: Arrow et al. (1961)

Form:

U=[αBρ+(1α)Tρ]1/ρU = \left[\alpha B^\rho + (1-\alpha) T^\rho\right]^{1/\rho}

Where:

Implied cross-elasticity:

ϵTB=(σ1)PBBE\epsilon_{TB} = (\sigma - 1) \cdot \frac{P_B B}{E}

Advantages:

Disadvantages:

Typical range: $\sigma = 0.2$ to $0.8$ for complements

3. Translog Demand

Reference: Christensen et al. (1975)

Form: Second-order flexible functional form

lnqi=alphai+sumjbetaijlnpj+gammailny\\ln q_i = \\alpha_i + \\sum_j \\beta_{ij} \\ln p_j + \\gamma_i \\ln y

Where betaij\\beta_{ij} are cross-price terms.

Advantages:

Disadvantages:

4. Linear Interaction

Form:

A=A0alphaPTbetaPBgammaPTcdotPBA = A_0 - \\alpha P_T - \\beta P_B - \\gamma P_T \\cdot P_B

Where $\gamma > 0$ for complements.

Cross-price elasticity:

epsilonTB=fracbeta+gammaPTAcdotPB\\epsilon_{TB} = -\\frac{\\beta + \\gamma P_T}{A} \\cdot P_B

Advantages:

Disadvantages:

5. Nested Logit (Discrete Choice)

Reference: McFadden (1978)

Form: For attendance decision

P(attend)=fraceVattendeVattend+eVnotattendP(attend) = \\frac{e^{V_{attend}}}{e^{V_{attend}} + e^{V_{not\\_attend}}}

Where VattendV_{attend} depends on both ticket and beer prices.

Advantages:

Disadvantages:


How Economists Evaluate Specifications

1. Theoretical Consistency

Question: Does specification come from utility maximization?

Evaluation criteria:

Rankings:

2. Empirical Fit

Metrics:

Data requirements:

3. Flexibility vs Parsimony

Trade-off:

Evaluation:

4. Plausibility of Estimates

Bounds checking:

Our choice (0.1):

5. Policy Robustness

Question: Do policy conclusions change with specification?

Evaluation:


Comparison to Empirical Literature

Food Complements

Transportation

Entertainment

Stadium tickets & beer: NO PUBLISHED ESTIMATES


Recommendation for This Analysis

Current Approach (Multiplicative with ε=0.1)

Pros:

Cons:

Better Approaches (If Data Available)

  1. Estimate AIDS model with Yankees panel data

    • Vary prices across games/seasons

    • Estimate full demand system

    • Get cross-elasticity from data

  2. Use car/gasoline analogy

    • Both are “required + optional” like tickets/beer

    • Cross-elasticity -1.6 as benchmark

    • Test sensitivity to -0.5, -1.0, -1.6

  3. Survey-based calibration

    • Ask fans willingness to attend with/without beer

    • Discrete choice experiment

    • Estimate cross-effect structurally

For This Project

Keep current approach but:

  1. ✅ Document it’s ASSUMED (done)

  2. ✅ Run Monte Carlo over plausible range 0.05-0.30 (done)

  3. ✅ Cite analogous contexts (car/gas: -1.6)

  4. ✅ Show sensitivity of conclusions

Add to references:

References
  1. Leisten, M. (2025). Twitter Thread: Economic Analysis of Beer Price Controls at Yankee Stadium. Twitter/X. https://x.com/LeistenEcon/status/1990150035615494239
  2. Varian, H. R. (1992). Microeconomic Analysis (3rd ed.). W.W. Norton & Company.
  3. Deaton, A., & Muellbauer, J. (1980). An Almost Ideal Demand System. American Economic Review, 70(3), 312–326.
  4. Arrow, K. J., Chenery, H. B., Minhas, B. S., & Solow, R. M. (1961). Capital-Labor Substitution and Economic Efficiency. Review of Economics and Statistics, 43(3), 225–250.
  5. Christensen, L. R., Jorgenson, D. W., & Lau, L. J. (1975). Transcendental Logarithmic Utility Functions. American Economic Review, 65(3), 367–383.
  6. McFadden, D. (1978). Modeling the Choice of Residential Location. In A. Karlqvist, L. Lundqvist, F. Snickars, & J. Weibull (Eds.), Spatial Interaction Theory and Planning Models (pp. 75–96). North-Holland.